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Modeling problems from biology, coding theory, combinatorics, aerospace engineering often rely on
solving polynomial systems f1 = ·· · = fm = 0 in variables x1, . . . , xn exactly over a finite field or rational
numbers.

To solve exactly the polynomial systems, we rely on Gröbner basis computations. This requires first
computing a Gröbner basis for a total degree order using Buchberger or F4/F5 [Fau99; Fau02]. Then, we
apply a change of order algorithm like FGLM [Fau+93] or Sparse-FGLM [FM11; FM17].

While the second step is only singly exponential in the number of variables, it is often the bottleneck of the
computation in practice and consists in iterated matrix-vector and matrix thin-matrix products. Efficient
implementations require computers with an architecture dedicated to parallelism. Most supercomputers
in the Top500 use GPUs which outperform CPUs in terms of theoretical peak performance. GPUs permit
heterogeneous computing. They have dedicated units for linear algebra tasks that are omnipresent in
graphics applications. Their architecture well suited to parallelism seems to fit best our problematic.

Arithmetic libraries (FFLAS [gro19], FLINT [HJP13], NTL [Sho21]) on CPU use floating-point types to
compute over a finite field. Even though some fields can only be represented on a single word with
integers, there are efficient instructions for parallelism (AVX on CPU) and libraries (BLAS [ZQG11]) to
optimize cache memory.

In this work we present two novel contributions. First, we have ported existing single-word algorithms with
delayed modular reduction present in these libraries to GPU and obtained a competitive implementation.
These algorithms are limited to 26 bits prime. Therefore, our second contribution is to develop a novel
multiword algorithm that can handle characteristic with more than 26 bits by dividing each of our input
matrices into multiple matrices with small and high parts of our coefficients. Despite the good
performance we achieved, I will also mention some improvements possible with Karatsuba integer
multiplication scheme. GPUs VRAM is much more limited than CPUs RAM. Thus we need to be cautious
with the amount of memory used by these multiword algorithms. Yet, they offer a three-fold advantage
since they make it possible to increase modular reduction delay, larger characteristics and the use of more
efficient smaller precisions.

This is a joint work with Jérémy Berthomieu, Stef Graillat and Théo Mary.
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